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ties and chemical yields.

Enantioselective conjugate addition reactions of alkyl radicals to o’-phenylsulfonyl enones are described.
A bis-oxazoline-zinc triflate complex proved to be an effective catalyst leading to high enantioselectivi-

© 2010 Elsevier Ltd. All rights reserved.

Enantioselective conjugate radical addition reactions have been
studied to take advantage of the unique features of radical chemis-
try, in which detachable achiral auxiliaries play an important role
in determining the enantioselectivity.!> We have been interested
in developing bidentate achiral templates derived from enones
and the previously reported enantioselective conjugate radical
addition reactions of o’-hydroxy enones® and o/-phosphoric enon-
es using chiral Lewis acids.*® In particular, the o’-phosphoric en-
one template showed a high chemical reactivity and good
enantioselectivity with the chiral Lewis acid derived from chiral
bis-oxazoline (Box) derivative and zinc(Il) triflate. In the course
of our studies on enantioselective radical reactions, we investi-
gated the possibility of using an o/-phenylsulfonyl enone template
in conjugate radical addition, as the phenylsulfonyl group can be
removed under mild conditions® or utilized for further transforma-
tions.” The o’-phenylsulfonyl group has been utilized previously as
a highly efficient 1,5-chelating template in the catalytic enantiose-
lective Diels-Alder® and Mukaiyama-Michael reactions.’

The effect of various Lewis acids along with Box ligands was
examined (Table 1). The chiral Lewis acid, derived from Zn(OTf),
and bis-phenyl Box ligand 5, gave the highest enantiomeric excess
(entry 10). Ligands 1 and 4 were totally ineffective (entries 6 and
9). Cu(OTf), was also ineffective (entries 4 and 5) but magnesium
salts with ligand 5 gave poor to moderate enantioselectivities (en-
tries 2 and 3). As compared with the previous results obtained with
of-phosphoric enones, a similar trend was observed in terms of
the Lewis acid and the ligand. The effect of the solvent was briefly
examined as shown in Table 2 and diethyl ether gave the best re-
sult (entry 4). The reaction was faster in toluene and gave a high
chemical yield, but the enantioselectivity decreased to a small ex-
tent (entry 3). Furthermore, the reaction was slow in dichloro-
methane and THF and the enantioselectivity was moderate
(entries 1 and 2). In addition, we briefly examined the catalytic effi-
ciency of the chiral Lewis acid derived from zinc triflate and ligand
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5. The use of 20-30 mol % of the chiral Lewis acid gave the same
enantioselectivity for the conjugate addition as compared to the
reaction with a stoichiometric amount. Reducing the amount of
catalyst to 10 mol % gave almost the same enantioselectivity (80%
ee vs 79% ee). The yields were still good. Further lowering of the
catalyst loading to 5 mol % resulted in a significant decrease in
enantioselectivity (33% ee) as well as in the chemical yield (65%).

To improve the enantioselectivity in the conjugate addition, the
effect of structural variation of the o/-phenylsulfonyl enone 8 was
studied. As shown in Table 3, structural modification of the sulfo-
nyl groups did not influence the enantioselectivity significantly. t-
Butylsulfonyl and p-toluenesulfonyl groups gave almost the same
enantiomeric excess (entries 3 and 4). Furthermore, when the
phenylsulfonyl group was changed to bulkier 4-biphenylsulfonyl

Table 1
Effect of Lewis acids and ligands on the conjugate radical addition®

chiral Lewis acid

o)
0
n-BuzSnH, Et;B/0,
PhOzSMPN i-Prl PhO,S oh

CHyCly, -78 °C, 24 h

6 7
Entry Lewis acid Ligand Yield® (%) ee (%)
1 None None 51 (44) —
2 MgBr, (4R,55)-5 59 (27) 39
3 Mg(ClOy4); (4R,55)-5 66 (23) 52
4 Cu(OTf), (R)-2 51 (33) 0
5 Cu(OTf), (4R,55)-5 57 (18) 4
6 Zn(OTf), (81 65 (27) 0
7 Zn(OTf), (R)-2 68 (12) 13
8 Zn(OTf), (5)-3 66 (13) 6
9 Zn(OTf), (S)-4 63 (27) 0
10 Zn(OTf), (4R,55)-5 75 (10) 71

¢ Typical reaction conditions: 1.0 equiv of substrate, 0.3 equiv of chiral Lewis
acid, 10.0 equiv of alkyl iodide, 3.0 equiv of BusSnH, and 2.0 equiv of Et;B were
employed.

b Isolated yield; yield of recovered 6 in parentheses.

¢ ees were determined using chiral HPLC.
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Table 2
Effect of solvent?
o Zn(0Tf)2, 5 o
n-BuszSnH, Et3B/0, \)J
PhOzs\MPth 1l PhO,S on
solvent, -78 °C
6 7
Entry Solvent Time (h) Yield® (%) ee‘ (%)
1 CH,CL, 24 75 (10) 71
2 THF 24 61 (27) 66
3 Toluene 6 96 72
4 Et,0 12 92 80

@ Chiral Lewis acid 5 (30 mol %) used.
b Isolated yield; yield of recovered 6 in parentheses.
¢ ees were determined using chiral HPLC.

and mesitylsulfonyl groups, the enantioselectivities dropped to
58% ee and 42% ee, respectively (entries 7 and 8). Although the t-
butylsulfonyl group was slightly better than the phenylsulfonyl
group in terms of the enantioselectivity, o/-phenylsulfonyl enone
6 was utilized to determine the scope of the present method due
to the synthetic utility of the phenylsulfonyl group relative to the
t-butylsulfonyl group.'®

To determine the scope and limitations of the present method,
the reaction was carried out with several structurally different o'-
phenylsulfonyl enones using the chiral Lewis acid (20 mol %) de-
rived from Zn(OTf), and ligand 5 in diethyl ether at —78 °C for
12 h. As shown in Table 4, conjugate addition reactions of 10 with
several alkyl iodides proceeded cleanly, yielding the addition prod-
ucts 11 in high yields. The enantioselectivities of the products ran-
ged from 73% to 95% ee, the highest being achieved when 10
(R =Me) was reacted with cyclohexyl iodide (entry 6). The size of
the alkyl radical did not have a large impact on the level of enanti-
oselectivity in the conjugate addition. Although the enantioselec-

Table 3
Modification of the o'-phenylsulfonyl enone®
o Zn(OTf),, 5 o
n-BuzgSnH, Et;B/O
RO;S A+ i S =2 ROZS\)J
Et,0,-78°C, 12 h Ph
8 9
Entry R Yield® (%) ee (%)
1 Ph 92 80
2 CH;5 71 61
3 t-Bu 87 85
4 p-Tolyl 88 84
5 4-Chlorophenyl 58 (33) 60
6 4-t-Butylphenyl 91 72
7 4-Biphenyl 87 58
8 Mesityl 76 42
9 Naphthyl 84 69

¢ Typical reaction conditions: 1.0 equiv of substrate, 0.2 equiv of chiral Lewis
acid, 10.0 equiv of alkyl iodide, 3.0 equiv of Bus3SnH, and 2.0 equiv of Et;B were
used.

b Isolated yield; recovered starting material in parentheses.

Table 4
Addition of alkyl radicals to o/-phenylsulfonyl enone®

20 mol% Zn(OTf),, 5
n-BuzSnH, Et3B/O,

Et,0,-78°C, 12 h

(]

PhOZS\)K/\R-F R'—]|

10 11
Entry R R Yield” (%) ee (%)
1 Ph Et 72 90
2 Ph c-Hexyl 89 74
3 Ph t-Bu 94 78
4 Me Et 83 77
5 Me i-Pr 94 86
6 Me c-Hexyl 91 95
7 Me t-Bu 88 78
8 CH,CH,Ph Et 92 91
9 CH,CH,Ph i-Pr 91 77
10 CH,CH,Ph t-Bu 85 73

2 Typical reaction conditions: 1.0 equiv of substrate, 0.2 equiv of chiral Lewis
acid, 10.0 equiv of alkyl iodide, 3.0 equiv of n-Bu3SnH, and 2.0 equiv of Et;B were
used.

b Isolated yield.

2 20
PhO2S Ph Ph

7 80% ee 12
[a]p?°=-30.4 (c=0.76 in CHCI3)
reference -38.9 (¢ = 0.97 in CHClg, 24 °C)
for S, 98% ee

5% Na(Hg)

MeOH, -20°C, 2 h

Scheme 1. Absolute configuration.

Figure 1. Tetrahedral model for the catalyst-substrate complex.

tivities were not always very high, this method accommodates
primary, secondary, and tertiary alkyl radicals.

The absolute stereochemistry was determined by converting 7
into known compound 12.'! Treatment of 7 with sodium amalgam
in MeOH at —20 °C for 2 h afforded 12 in 75% yield (Scheme 1).12
On the basis of the previously reported optical rotation, the stereo-
chemistry was assigned as S.!" Figure 1 shows a tentative model
which accommodates the observed facial selectivity, where Zn?*
occupies the center of the tetrahedral transition state.!> Two coor-
dination sites are occupied by two nitrogen atoms of the Box
ligand, and the remaining two sites accommodate the oxygen
atoms of the o/-phenylsulfonyl enone template. Due to the pres-
ence of a phenyl group at the 4-position in the ligand, the alkyl rad-
ical would approach from the Si face of the double bond.
Furthermore, it is assumed that the s-cis-conformation of o’-phen-
ylsulfonyl enones could result from m-m stabilization of the transi-
tion state.!*

In summary, the o/-phenylsulfonyl enone template has been
introduced to achieve an enantioselective conjugate radical addi-
tion process. Several alkyl radicals worked well, yielding the conju-
gate addition products in high yields and good enantioselectivities.
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